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Abstract 
 
To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping 

control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based 
on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction character-
istics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme 
because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, 
in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the 
RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo 
system is validated through experiments. Experimental results show that the servo system with ABS controller based 
on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking per-
formance and robustness.  
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1. Introduction 

To improve product quality in high-tech industrial 
fields and in precision product processes, high preci-
sion position control systems have been developed. 
However, high precision position control systems 
have been faced with a friction problem that exists 
between the contact surfaces of two materials and 
produces an obstacle to the precise motion, because 
the friction is very sensitive to nonlinear time-varying 
effects such as temperature, lubrication condition, 
material texture, and contamination degree. Thus, the 
tracking performance of servo systems can be seri-
ously deteriorated because of the nonlinear friction 
characteristics. 

To overcome the friction problem and to obtain 
high performance of servo control systems, an appro-
priate friction model [1] to describe the nonlinear 
friction characteristics is required. The LuGre model 
[2] is a representative model that researchers have 
used because it has a simple structure to be imple-
mented in the design of the controller and can repre-
sent most of the friction characteristics except the pre-
sliding characteristic.  

Model-based control methods for precision position 
control can be divided into two methods. The first one 
is the friction feed-forward compensation scheme, 
which needs the identification of the nonlinear fric-
tion phenomena [1, 2]. However, it takes a long time 
and much effort to identify the nonlinear friction. In 
addition, even with successful completion of the fric-
tion identification process, it is difficult to achieve 
desirable tracking performance due to the nonlinear 
friction characteristics. Therefore, to achieve desir-
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able tracking performance of a servo system, a robust 
control scheme should be used simultaneously with 
the friction feed-forward compensator [3].  

The second method is the real time estimation 
scheme for the nonlinear friction coefficients, which 
is called the adaptive friction control scheme. This 
method can actively cope with the variation of the 
nonlinear friction, which has been proved and studied 
through experiments [4-7]. However, to generate the 
adaptation rules for the friction coefficients based on 
the LuGre friction model, a detailed mathematical 
approach is required. In addition, since the mathe-
matical model of the nonlinear friction may include 
unmodeled dynamics, i.e., uncertainties, which can 
cause an undesirable position tracking error of the 
servo system. 

To compensate for these system uncertainties and 
to improve tracking performance, artificial intelligent 
algorithms such as fuzzy logic and neural networks 
have been applied because of their advantage in cop-
ing with system uncertainties [8-11]. In general, fuzzy 
logic and neural network algorithms are effective in 
inferring ambiguous information because of their 
logicality, such as adaptation for learning ability, 
capacity for experiences, and parallel process ability 
[12]. The fuzzy neural network(FNN) combining the 
advantages of the two algorithms is presented [8, 9]. 
However, in real applications, FNN has a static prob-
lem due to its feed-forward network characteristics. 
Therefore, to overcome this static problem of the 
FNN, the recurrent fuzzy neural network(RFNN) 
with robust characteristics due to its feed-back struc-
ture is presented [10, 11, 13]. 

In this paper, an adaptive back-stepping control 
scheme with the RFNN technique is proposed so that 
servo systems with nonlinear friction uncertainties 
can achieve higher precision position tracking per-
formance. A dual adaptive friction observer is also 
designed to observe the internal states of the nonlin-
ear friction model. The position tracking performance 
of the proposed control system is evaluated through 
experiments. 

The organization of this paper is as follows: In sec-
tion 2, the dynamic equations for the position servo 
system with the LuGre friction model are described. 
In section 3, to estimate the unknown friction coeffi-
cients and to overcome system uncertainties in a posi-
tion servo system, the adaptive back-stepping control-
ler based on the dual friction observer and the recur-
rent fuzzy neural networks are designed. In section 4, 

the experimental results of the tracking performance, 
the observation of the states, and the estimation of the 
friction coefficients are shown. Finally, the conclu-
sion is given in section 5. 

 
2. Modeling of a position servo system 

The layout of a position servo system consists of 
mass, linear motion guide, ball-screw, and servo mo-
tor as shown in Fig. 1. The dynamic equation for the 
position servo system can be briefly represented as 

  
f dJ u T Tθ = − −&&  (1) 

 
where J  is the moment of inertia of the servo sys-
tem, θ&&  is the angular acceleration of the screw, u  
is the control input torque, fT  is the friction torque, 
and dT  is the disturbance torque due to system un-
certainties. 

The LuGre model is used for modeling the friction 
in the position servo system. The LuGre model can 
describe the nonlinear friction characteristics between 
two contact surfaces in a mechanical system. As 
shown in Fig. 2, the relative motion between two 
contact surfaces can be represented by bristles. The 
stiffness and damping of bristles can be modeled with 
springs and dampers, respectively. Canudas de Wit et 
al. [2] represented the average deflection of bristles 
by a state variable z  as follows: 

 

0 ( ) ,z h zθ σ θ= −& &&  (2) 
 

 
 
Fig. 1. Layout of the position servo system. 

 

 
 
Fig. 2. Friction interfaces with bristles between two surfaces. 
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0 1 2fT z zµ µ µ θ= + + &&  (4) 

 
where θ&  is the generalized velocity, stθ&  is the 
Striebeck velocity, 0σ  is the nominal static friction 
parameter, sT  is the static friction torque, cT  is the 
Coulomb friction torque, and 0µ , 1µ , and 2µ are 
the bristle stiffness coefficient, bristle damping coef-
ficient, and viscous damping coefficient, respectively. 
The function ( )g ⋅  is assumed to be known and to be 
a positive value, and it depends on some factors such 
as material properties and temperature. To consider 
the friction torque variations due to the contact condi-
tion of the position servo system, the coefficients 0µ , 

1µ , and 2µ  are assumed to be independent, un-
known positive constants. 

Substituting Eqs. (2), (3), and (4) into Eq. (1), the 
dynamic equation for the position servo system with 
friction can be expressed as 

 

0 3 4( ) dJ u z h z Tθ µ µ θ µ θ= − + − −&& & &  (5) 
 

where 
 

3 0 1µ σ µ= , 4 1 2µ µ µ= + .  

 
3. Design of an adaptive control system 

System uncertainties such as high nonlinear friction 
characteristics according to the operation condition 
should be considered in precise position servo sys-
tems. Thus, feedback linearization and robust control 
schemes can be considered to reject system nonlinear-
ity and have robustness to unmodeled dynamics, re-
spectively. However, the robust control schemes may 
not be appropriate for precise position control because 
these schemes require some premises on bounded 
uncertainties and bounded disturbance. In addition, if 
the information on system uncertainties is not in-
cluded in the control scheme, the feedback lineariza-
tion scheme may not achieve high precision position 
tracking performance and make servo systems be-
come unstable. To overcome these problems in posi-
tion control servo systems, it is desirable to apply an 
adaptive control scheme. 

 
 

3.1 Design of back-stepping controller 

The back-stepping control(BSC) system can be de-
signed step by step as follows [14]: 

Step 1. To achieve the desired tracking perform-
ance, the tracking error is defined by the new state 

1y  as 
 

1 ry θ θ= −  (6) 
 

where rθ  is the reference input. The derivative of 
1y  is expressed as 

 
1 .ry θ θ= −& &&  (7) 

 
We define a stabilizing function 1α  as 
 

1 1 1r k yα θ= −&  (8) 
 

where 1k  is a positive constant. The Lyapunov con-
trol function (LCF) 1V  is selected as 
 

2
1 1

1 .
2

V y=  (9) 

 
Then, the derivative of 1V  is expressed as 
 

2
1 1 1 1 1 1 1 1 2 1 1( )V y y y k y y y k yθ α= = − − = −&& &  (10) 

 
where 2 1.y θ α= −&  
 

Step 2. The velocity tracking error is defined by the 
new state 2y  as 

 
2 1.y θ α= −&  (11) 

 
The derivative of 2y  can be obtained as 
 

2 1 0 3 4 1
1 ( ( ) ) .dy u z h z T
J

θ α µ µ θ µ θ α= − = − + − − −&& & && &&   

 (12) 
 

From Eq. (12), in order to select a feedback control 
law that can guarantee system stability, the LCF for 
Eq. (11) is selected as 
 

2
2 1 2

1 .
2

V V y= +  (13) 

 
The derivative of 2V  can be represented as 
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2 1 2 2

2
1 1 2 1 0 3 4 1

1[ ( ( ) ) ].d

V V y y

k y y y u z h z T
J

µ µ θ µ θ α

= +

= − + + − + − − −

& & &

& & &
  

 (14) 
 
If the last term in Eq. (14) is defined as 
 

1 0 3 4 1 2 2
1 ( ( ) )dy u z h z T k y
J

µ µ θ µ θ α+ − + − − − = −& & &   

   (15) 
 

where 2( 0)k >  is a design parameter, then the BSC 
law as the feedback control law can be selected as 
 

1 2 2 1 0 3 4( ) ( ) .du J y k y z h z Tα µ µ θ µ θ= − − + + − + +& &&   
 (16) 
 

However, in Eq. (16), the internal state z  of the 
friction model cannot be measured, and friction pa-
rameters and the disturbance torque dT  cannot be 
known exactly. In addition, if the friction terms in Eq. 
(16) cannot be exactly considered in position control 
servo systems, a large steady-state error may occur. 

 
3.2 Design of adaptive back-stepping controller and 

dual friction observer 

To select a desired control law, a dual-observer [7] 
to estimate the unmeasurable internal state z  in the 
friction model is applied as follows: 

 

0 0 0 0ˆ ˆ( ) ,z h zθ σ θ η= − +& & &  (17) 

1 0 1 1ˆ ˆ( ) ,z h zθ σ θ η= − +& & &  (18) 
 

where 0ẑ  and 1̂z  are the estimated values of the 
internal states in the friction model, and 0η  and 1η  
are the observer dynamic terms which can be ob-
tained from an adaptive rule. The corresponding ob-
servation errors are given by 
 

0 0 0 0( ) ,z h zσ θ η= − −&&% %  (19) 

1 0 1 1( ) ,z h zσ θ η= − −&&% %  (20) 
 

where 0 0ˆz z z= −%  and 1 1̂z z z= −% . Equations (19) 
and (20) will be induced from the adaptive rule. 

To induce the adaptive rule to guarantee stability 
against unknown parameters and the observer dy-
namic terms, the reconstruction error E  is defined 
as 

 
ˆ

d dE T T= −  (21) 

 
where d̂T  is the estimated value of dT  and it is 
assumed that E E≤ , where E  denotes the 
bounded value of E . 

We now select the 3rd LCF as follows: 
 

2
3 2

1 ˆ( )
2

V V E E
ρ

= + −  (22) 

 
where ( 0)ρ >  is a positive constant and Ê  is the 
estimated value of the reconstruction error. The de-
rivative of 3V  can be represented as 
 

3 2

2
1 1 2 1 0 3

4 1

1 ˆ ˆ( )

1[ ( ( )

1 ˆ ˆ) ] ( )d

V V E E E

k y y y u z h z
J

T E E E

ρ

µ µ θ

µ θ α
ρ

= + −

= − + + − +

− − − + −

&& &

&

&& &

 (23) 

 
From Eq. (23), the adaptive back-stepping con-
trol(ABSC) law can be selected as 
 

1 2 2 1 0 0 3 1 4
ˆ ˆˆ ˆ ˆˆ ˆ( ) ( ) du J y k y z h z T Eα µ µ θ µ θ= − − + + − + + +& &&  

 (24) 
 

Substituting Eq. (24) into Eq. (23), then 
 

2 2 2
3 1 1 2 2 0 0 0 0 3 1

3 1 4

ˆ[ ( )

1ˆ ˆ ˆ ˆˆ( ) ) ] ( )d d

yV k y k y z z h z
J

h z T T E E E E

µ µ µ θ

µ θ µ θ
ρ

= − − + − − +

+ − + − + + −

&& %% %

&& &% %

  

 (25) 
 

where 0 0 0ˆµ µ µ= −% , 3 3 3ˆµ µ µ= −% , and 4 4 4ˆµ µ µ= −%  
are the unknown parameter estimate errors. The 4th 
LCF 4V  is selected as 
 

2 2 2 2 2
4 3 0 0 3 1 0 3 4

0 3 4

1 1 1 1 1 .
2 2 2 2 2

V V z zµ µ µ µ µ
γ γ γ

= + + + + +% % %% %   

 (26) 
 
The derivative of 4V  can be obtained as 
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2 2 2 2
4 1 1 2 2 0 0 0 3 0 1

2 2
0 0 0 3 1 3

0 3

2 2
4 4 0 0 0 0

4

2 2
1 3 3 1

( ) ( )

1 ( ) 1ˆ ˆˆ ˆ( ) ( )

1 ˆ( ) ( )
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V k y k y h z h z
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J J
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J J
y yz h E E
J J

µ σ θ µ σ θ
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µ θ µ µ µ η
γ

µ θ µ η
ρ
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+ − − + −

+ − − + − −

+ − + +

& && % %

&
& &% %

&&% %

&& %%

  

 (27) 
 

From Eq. (27), the update laws can be determined as 
 

0
0 2 0ˆ ˆ ,y z

J
γµ = −&  (28) 

3
3 2 1ˆ ˆ( ) ,y h z

J
γµ θ=& &  (29) 

4
4 2ˆ ,y

J
γµ θ= −& &  (30) 

 
and the observer dynamic terms are expressed as 
 

2
0 ,y

J
η = −  (31) 

2
1 ( ),y h

J
η θ= &  (32) 

2ˆ .yE
J

ρ= −&  (33) 

 
Then, Eq. (27) can be represented as 
 

2 2 2
4 1 1 2 2 0 0 0

2 2 2
3 0 1 1 1 2 2

( )

( ) 0.

V k y k y h z

h z k y k y

µ σ θ

µ σ θ

= − − −

− ≤ − − ≤

&& %

& %
 (34) 

 
From Eq. (34), we can define ( )W y  as follows: 
 

1 1 2 2 1 2( ) ( , )W y k y k y V y y= + ≤ − &  (35) 
 

Since 0V ≤& , V  is a non-increasing function. Thus, 
it has a limit V∞  as t →∞ . Integrating Eq. (35), 
then 
 

{ }
0 0

1 2

0 0 0 0

lim ( ( )) lim ( , )

lim ( ( ), ) ( ( ), ) ( ( ), )

t t

t tt t

t

W y d V y y d

V y t t V y t t V y t t V

τ τ τ
→∞ →∞

∞→∞

≤ −

= − = −

∫ ∫ &
  

 (36) 
 

which means that 
0

( ( ))
t

t
W y dτ τ∫  exists and is finite. 

Since ( )W y  is also uniformly continuous, the fol-

lowing result can be obtained from the Barbalat 
lemma [14, 15] as 
 

lim ( ) 0.
t

W y
→∞

=  (37) 

 
Since 1y  and 2y  are converged to zero as t →∞ , 
θ  and θ&  approach to rθ  and rθ& , respectively, as 
t →∞ . Therefore, the ABSC system can be asymp-
totically stable in spite of the variation of system pa-
rameters and external disturbance. 

 
3.3 Design of recurrent fuzzy neural networks 

To determine the lumped uncertainty dT , a RFNN 
observer of a 4-layer structure is proposed, which is 
shown in Fig. 3. Layer 1 is the input layer with the 
recurrent loop, which accepts the two input variables. 
Layer 2 represents the fuzzy rules for calculating the 
Gaussian membership values. Layer 3 is the rule layer, 
which represents the preconditions and consequence 
for the links before and after layer 3, respectively. 
Layer 4 is the output layer. The interaction and learn-
ing algorithms for the layers are given as follows: 

 
A. Description of the RFNN 
Layer 1, Input layer: For each node i, the net input 

and output are represented, respectively, as 
 

1 1 1 1net ( 1),i i i ix w y N= + ⋅ −  (38) 
1 1 1 1( ) (net ( )) net ( ), 1, 2i i i iy N f N N i= = =  (39) 

 
where 1

1 1x y= , 1
2x y= & , 1

iw  is the recurrent weights, 
and N  denotes the number of iterations. 

 

 
 
Fig. 3. A general four-layer RFNN. 
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Layer 2, Membership layer: For each node, the 
Gaussian membership values are calculated. For the 
j th node, 

 
2 2

2
2

( )
net ( )

( )
i ij

j
ij

x m
N

σ
−

= −  (40) 

2 2 2 2( ) (net ( )) exp(net ( )), 1,...,j j j jy N f N N j n= = =   

 (41) 
 

where ijm  and ijσ  are the mean and standard de-
viation of the Gaussian function in the jth term of the 
ith input linguistic variable 2

ix  to the node of layer 2, 
respectively. n  is the total number of the linguistic 
variables with respect to the input nodes. 

Layer 3, Rule layer: Each node k in this layer is de-
noted by ∏. In addition, the input signals in this layer 
are multiplied by each other and then the result of the 
product is generated. For the kth rule node 

 
3 3 3net ( ) ( ),k jk j

j

N w x N=∏  (42) 

3 3 3 3( ) (net ( )) net ( ), 1, ... ,k k k ky N f N N k l= = =  (43) 
 

where 3
jx  represents the jth input to the node of layer 

3, 3
jkw  is the weights between the membership layer 

and the rule layer. ( / )il n i=  is the number of rules 
with complete rule connection, if each input node has 
the same linguistic variables. 

Layer 4, Output layer: The single node o in this 
layer is labeled as Σ , which computes the overall 
output as the summation of all input signals: 

 
4 4 4net ( ) ( ),o ko k

k
N w x N=∑  (44) 

4 4 4 4( ) (net ( )) net ( )o o o oy N f N N= =  (45) 
 

where the connecting weight 4
kow  is the output action 

strength of the oth output associated with the kth rule. 
4
kx  represents the kth input to the node of layer 4, 

and 4 ˆ
o dy T= . 

 
B. On-line learning algorithm 
In the learning algorithm, it is important to select 

parameters for the membership functions and weights 
to decide network performance. To train the RFNN 
effectively, on-line parameter learning is executed by 
the gradient decent method. There are four adjustable 
parameters. Our goal is to minimize the error function 
e  represented as 

2 2
1

1 1( ) ( )
2 2re yθ θ= − = . (46) 

 
By using the gradient descent method, the weight in 
each layer is updated as follows: 

Layer 4: The weight is updated by an amount 
 

4
4 4

14 4 4

net
net

o
ko w w w k

ko o ko

e e uw y x
w u w

η η η
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂

∆ = − = − =⎜ ⎟⎜ ⎟
∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

  

 (47) 
 

where 1 4neto

e uy
u
∂ ∂

= −
∂ ∂

 and wη  is the learning-rate 

parameter of the connecting weights of the RFNN. 
Layer 3: Since the weights in this layer are unified, 

the approximated error term needs to be calculated 
and propagated to calculate the error term of layer 2 
as follows: 

 
4 3

3 4
13 4 3 3

net
net net net

o k
k ko

k o k k

e e u y y w
u y

δ ∂ ∂ ∂ ∂ ∂
= − = − =

∂ ∂ ∂ ∂ ∂
 (48) 

 
Layer 2: The multiplication operation is executed 

in this layer by using Eq. (46). To update the mean of 
the Gaussian function, the error term is computed as 
follows: 

 
24 3 3

2
2 4 3 3 2 2

3 3

net net
net net net

jo k k
j

j o k k j j

k k
k

ye e u y
net u y y

y

δ

δ

∂∂ ∂ ∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂

=∑
  

 (49) 
 

and then the update law of ijm  is  
 

2 2

2 2

2
2

2

net
net

2( )

j j
ij m m

ij j j ij

i ij
m j

ij

ye em
m y m

x m

η η

η δ
σ

∂ ∂∂ ∂
∆ = − = −

∂ ∂ ∂ ∂

−
=

 (50) 

 
where mη  is the learning-rate parameter of the mean 
of the Gaussian functions. The update law of ijσ  is 
 

2 2

2 2

2 2
2

3

net
net

2( )

j j
ij s s

ij j j ij

i ij
s j

ij

ye e
y

x m

σ η η
σ σ

η δ
σ

∂ ∂∂ ∂
∆ = − = −

∂ ∂ ∂ ∂

−
=

 (51) 
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Fig. 4. Photograph of the servo position tracking control 
system. 
 
where sη  is the learning-rate parameter of the stan-
dard deviation of the Gaussian functions.  

The weight, mean, and standard deviation of the 
hidden layer can be updated by using the following 
equations: 

 
4 4 4( 1)ko ko kow N w w+ = + ∆  (52) 
( 1) ( )ij ij ijm N m N m+ = + ∆  (53) 
( 1) ( )ij ij ijN Nσ σ σ+ = + ∆  (54) 

 
4. Experiment results 

Fig. 4 shows a photograph of the servo position 
tracking control system to evaluate the performance 
of control schemes. The angular position was meas-
ured with an incremental rotary encoder whose count 
per encoder was 4 times of 10000 pulses per revolu-
tion. A data acquisition board with D/A 12-bit resolu-
tion was used to supply the driving voltage to the 
motor. The sampling rate of the servo system was 
selected as 500 Hz. The control algorithms were pro-
grammed with C-language. The parameters of the 
servo system and friction model for experiment are 
shown in Table 1. The block diagram of the ABSC 
system with RFNN is shown in Fig. 5. 

To evaluate the performance of the servo system 
with the proposed control scheme, two reference in-
puts were applied as follows: 

 
1

0.1sin(0.4 )r tθ π=  [rad],  

2
0.1sin(0.125 ) sin(0.75 )r t tθ π π=  [rad]  

 
To compare the tracking performances of the BSC 

system, ABSC system, ABSC system with RFNN, 
the reference input 

1r
θ  was continuously used for 

experiment as follows: the BSC system was applied 

Table 1. Parameters of the servo and friction model. 
 

Parameter Notation Value 

Moment of inertia J  5 22.3 10 kgm−×  
Bristles stiffness 

coefficient 0σ  0.15 Nm  

Stribeck velocity stθ&  0.013 rad/s  

Coulomb friction cT  31.97 10 Nm−×  

Static friction sT  32.6 10 Nm−×  

 

 
 
Fig. 5. Block diagram of the ABSC system with RFNN. 

 
during the initial 20 seconds, the ABSC system dur-
ing the 40 seconds after the application of the BSC 
system, and the ABSC system with RFNN during the 
40 seconds after the application of the ABSC system. 
The reference input 

2r
θ  was independently experi-

mented for the ABSC system and the ABSC system 
with RFNN, respectively. In addition, the structure of 
the RFNN is defined to two neurons at inputs of 
which each has a recurrent loop, five neurons at 
membership layer, five neurons at rule layer, and one 
neuron at output layer. The fuzzy sets at the member-
ship layer, which have the mean ( ijm ) and standard 
deviation ( ijσ ), were determined according to the 
maximum variation boundaries of 1y  and 2y  of the 
ABSC system without RFNN. ijm  and ijσ  vectors 
applied to experiment are selected as follows: 
 

1 1[ 0.002, 0.001, 0.0, 0.001, 0.002]jm κ= − − × ,  

2 2[ 0.2, 0.1, 0.0, 0.1, 0.2]jm κ= − − × ,  

1 3[0.003, 0.003, 0.003, 0.003, 0.003]jσ κ= × ,  

2 4[0.3, 0.3, 0.3, 0.3, 0.3]jσ κ= × .  

 
where 1 jm  and 1 jσ  indicate the mean and standard 
deviation vectors of 1y , respectively, 2 jm  and 2 jσ  
indicate the mean and standard deviation vectors of 

2y , respectively, and 1,( 1,2,3,4)i iκ = = . 
Fig. 6 shows the error of the BSC system, ABSC 

system, and ABSC system with RFNN for the refer-
ence input 

1r
θ . The angular displacement rms(root 

mean square) error of the BSC system is 0.0054. 
While the ABSC system is operating, its maximum  
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Fig. 6. Error of the BSC system, ABSC system, and ABSC 
system with RFNN for the reference input 

1r
θ . 

 
error tends to exponentially decrease and then con-
verge to a steady state value due to 0σ̂ , 3σ̂ , and 4σ̂  
by the update rules. The angular displacement rms 
error of the ABSC system is 0.0027. In the operating 
range of the ABSC system with RFNN, the angular 
displacement error converges to a steady state value 
after experiencing a transient state for about 1 second 
because of the switch from the ABSC system to the 
ABSC system with RFNN. The angular displacement 
rms error is 0.0005. The tracking performance of the 
ABSC system compared with it of the BSC system is 
improved by 2 times and it of the ABSC system with 
RFNN compared with it of the ABSC system is im-
proved by 5.4 times. The performance improvement 
of the ABSC system with RFNN implies that the 
control input of the RFNN including the reconstruc-
tion estimation compensates system uncertainties. 

Fig. 7 shows the estimation and the observation of 
the BSC system, ABSC system, and ABSC system 
with RFNN for the reference input 

1r
θ . The estima-

tions by the update rule are shown in Fig. 7(a). The 
BSC system estimates the friction parameter to be 0, 
because the BSC system does not have the update 
rule for 0σ̂ , 3σ̂ , and 4σ̂ . When the ABSC system is 
applied to the servo system, the update rules estimates 
the friction parameters, which converge to some val-
ues; this convergence stabilizes the servo position 
system. When the ABSC system is switched to the 
ABSC system with RFNN, the estimations of the 
friction parameters do not vary because the angular 
displacement error is largely decreased by the RFNN. 
Therefore, the friction estimation values can maintain 
steady state in the operating range where the RFNN is 
used. Fig. 7(b) shows the observations of the dual 
obse rve r .  The  sp ike  pheno menon  o f  0ẑ   

 
(a) Estimations of the update rule 

 

 
(b) 0z  and 1z  of the dual observer 

 
Fig. 7. Estimation and observation of the BSC system, ABSC 
system, and ABSC system with RFNN for the reference input 

1r
θ . 
 
among both observation values occurs to a changing 
point of velocity, because 2y  corresponds to the 
velocity error, which directly affects 0ẑ , as described 
in Eq. (31). However, in the case of the ABSC system 
with RFNN, the spike phenomenon of 0ẑ  is largely 
removed, which means that the RFNN compensates 
system uncertainties such as nonlinear friction includ-
ing Coulomb friction, static friction, Stribeck velocity, 
and unmodeled dynamics. 

Fig. 8 shows the estimated friction torque of the 
BSC system, ABSC system, and ABSC system with 
RFNN for the reference input 

1r
θ . The estimated 

friction torques of the BSC system, ABSC system, 
and ABSC system with RFNN reflect the results of 
Fig. 7. Fig. 9 shows the control input of the BSC sys-
tem, ABSC system, and ABSC system with RFNN 
for the reference input 

1r
θ . When the RFNN includ-

ing reconstruction error estimation is applied to the 
servo system at 80 seconds as shown in Fig. 9(a), a 
little more control input than before that is required to 
compensate system uncertainties as shown in Fig.  



 H. M. Kim et al. / Journal of Mechanical Science and Technology 23 (2009) 3059~3070 3067 
 

  

 
 
Fig. 8. Estimated friction torque of the BSC system, ABSC 
system, and ABSC system with RFNN for the reference input 

1r
θ . 

 

 
(a) Estimated torque of the RFNN including the reconstruc-

tion error 
 

 
(b) Control input torque applied to the servo system 

 
Fig. 9. Control inputs of the BSC system, ABSC system, and 
ABSC system with RFNN for the reference input 

1r
θ . 

 
9(b). In addition, the deflection of the control input 
removes the deflection of the error for the BSC and 
ABSC systems, which is shown in Fig. 6. 

Fig. 10 shows the errors of the ABSC system and 
ABSC system with RFNN for the reference input 

2r
θ . 

 
 
Fig. 10. Errors of the ABSC system, and ABSC system with 
RFNN for the reference input 

2r
θ . 

 
The reference input 

2r
θ  reflects a real situation and 

includes more system uncertainties because of the 
time varying amplitude sinusoidal input. In addition, 
the experiment conditions of the ABSC system and 
ABSC system with RFNN are all the same. The 
tracking error rms values of the ABSC system with 
RFNN and ABSC system are 0.0007 and 0.003, re-
spectively. Therefore, the tracking rms error of the 
ABSC system with RFNN is four times less than that 
of the ABSC system, which implies that the RFNN is 
suitable for compensating system uncertainties. 

Fig. 11 shows the friction parameter estimations for 
the ABSC system and ABSC system with RFNN for 
the reference input 

2r
θ . The estimations of the fric-

tion parameters converge to steady state values in 
about 20 seconds as shown in Fig. 11(a). The estima-
tion values of the friction parameters for the ABSC 
system with RFNN are much smaller than those for 
the ABSC system, as shown in Fig. 11(b), because 
the RFNN and the reconstruction error estimator rap-
idly decrease the tracking error by reducing system 
uncertainties. 

Fig. 12 shows the estimated friction torques of the 
ABSC system and ABSC system with RFNN for the 
reference input 

2r
θ . The parameters of the ABSC 

system with RFNN were estimated to be approxi-
mately 0, because the RFNN compensated system 
uncertainties including nonlinear friction. Therefore, 
the effectiveness of the RFNN was clearly demon-
strated from the above results.  

Fig. 13 shows the control input of the ABSC sys-
tem and ABSC system with RFNN for the reference 
input 

2r
θ . The estimated torque of the RFNN includ-

ing the reconstruction error and the control input 
torque applied to the servo motor are shown in Figs. 
13(a) and (b), respectively. The ABSC system with 



3068  H. M. Kim et al. / Journal of Mechanical Science and Technology 23 (2009) 3059~3070 
 

 

 
(a) Estimation of the adaptive rule of the ABSC system 

 

 
(b) Estimation of the adaptive rule of the ABSC system with 

RFNN 
 
Fig. 11. Friction parameter estimations of the ABSC system 
and ABSC system with RFNN for the reference input 

2r
θ . 

 

 
 
Fig. 12. Estimated friction torques of the ABSC system and 
ABSC system with RFNN for the reference input 

2r
θ . 

 
RFNN generated a little more control input than the 
ABSC system due to the estimation result of the 
RFNN including the reconstruction error, as shown in 
Fig. 13(a). This implies that the ABSC system with 
RFNN compensates system uncertainties such as 
nonlinear friction and unmodeled dynamics, satisfac-
torily. 

 
(a) Estimated torque of the RFNN including the reconstruc-

tion error 
 

 
(b) Control input torque applied to the servo system 

 
Fig. 13. Control input of the ABSC system and ABSC system 
with RFNN for the reference input 

2r
θ . 

 
To show the influence of the RFNN parameters on 

control performance, two main parameters, which are 
ijm  and ijσ  of the Gaussian fuzzy membership 

function in Layer 2, are changed. Initial values of 
these values are selected by investigating the range 
and magnitude of 1y  and 2y , and then are on-line 
updated through Eqs. (53) and (54). On the other 
hand, the change in the weight factors is not consid-
ered to experimental condition because of using initial 
random values. Fig. 14 shows the results of the ABSC 
system with the variation of ijm  and ijσ  in RFNN 
for the reference input 

2r
θ . The changed conditions 

of the mean and standard deviation are 0.5iκ =  and 
1.5iκ = . For 0.5iκ = , the results of the error, esti-

mation, and estimated friction torque of the ABSC 
system with RFNN are diverged due to the reduction 
of ijm  and ijσ  in 7.5 seconds as shown in Fig. 14 
(a), (b), and (c). On the other hand, although the error 
state of the ABSC system with RFNN for 1.5iκ =  is 
stable as shown in Fig. 14(a), the angular displace-
ment rms error of compared system with the ABSC  
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(a) Error of the ABSC system with RFNN 

 

 
(b) Estimation of the adaptive rule of the ABSC system with 

RFNN 

 

 
(c) Estimated friction torque of the ABSC system with RFNN 
 
Fig. 14. Results of the ABSC system with the variation of 

ijm  and ijσ  in RFNN for the reference input 
2r

θ . 
 

system with RFNN in Fig. 10 is minutely increased to 
1.25 times. In addition, although the estimations of 
the adaptive rule of the ABSC system with RFNN as 
shown in Fig. 14(b) compared with their estimation 
values as shown in Fig. 11(b) is increased, their effect 
for the estimated friction torque is very small as 
shown in Fig. 14(c) compared with their estimated 
friction torque of the ABSC system as shown in Fig. 
12, which reflects the result of Fig. 14(b). At this time, 

the ratio of the maximum friction torque in Fig. 12 to 
it in Fig. 14(c) is approximately 30 times. Thus, we 
can conclude that ijm  and ijσ  of the Gaussian 
membership function in the RFNN depend on the 
error output of the servo system. Finally, ijm  and 

ijσ  of the Gaussian membership function in the 
RFNN need to be carefully selected. 

 
5. Conclusion 

The tracking performance of servo systems is dete-
riorated by nonlinear friction and system uncertainties, 
especially in the region where the direction of veloc-
ity of the servo system is changed. To reduce the 
effects of the friction and system uncertainties, a ro-
bust adaptive precision position control scheme is 
proposed. Unmeasurable state and parameters of the 
dynamic friction model are observed and estimated 
by the dual observer and the ABS controller, respec-
tively. To actively cope with system uncertainties, the 
RFNN scheme is applied to the servo system. Ex-
periments showed that the servo system with the dual 
observer, ABS controller, and RFNN including the 
reconstruction error estimator can achieve desired 
tracking performance and robustness. In addition, the 
influence of the mean and standard deviation of the 
RFNN parameters on control performance is shown 
through experiment. 
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